أسعار العملات

دولار / شيكل 3.29
دينار / شيكل 4.64
جنيه مصري / شيكل 0.21
ريال سعودي / شيكل 0.88
يورو / شيكل 3.92
حالة الطقس

القدس / فلسطين

الجمعة 20.24 C

٤ص ٢٤ص ٦

٤ص ٢٤ص ٦

٤ص ٢٤ص ٦

طباعة تكبير الخط تصغير الخط

٤ص ٢٤ص ٦، نرحب بكم طلابنا الأعزاء في موقعكم أون تايم نيوز، والذي يضم نخبة من الأساتذة والمعلمين لكافة المراحل الدراسية.حيث نعمل معا كوحدة واحدة

ونبذل قصارى جهدنا لنضع بين أيديكم حلول نموذجية لكل ما يعترضكم من أسئلة لنساعدكم على التفوق والنجاح.

الرياضيات هي مجموعة من المعارف المجردة الناتجة عن الاستنتاجات المنطقية المطبقة على مختلف الكائنات الرياضية مثل المجموعات، والأعداد، والأشكال والبنيات والتحويلات. وتهتم الرياضيات أيضًا بدراسة مواضيع مثل الكمية والبنية والفضاء والتغير. ولا يوجد حتى الآن تعريف عام متفق عليه للمصطلح.

يسعى علماء الرياضيات إلى استخدام أنماط رياضية لصياغة فرضيات جديدة؛ من خلال استعمال إثباتات رياضية بهدف الوصول للحقيقة وذرء الفرضيات السابقة أو الخاطئة. فمن خلال استخدام التجريد والمنطق، طُوِّرت الرياضيات من العد والحساب والقياس إلى الدراسة المنهجية للأشكال وحركات الأشياء المادية. لقد كانت الرياضيات العملية نشاطًا إنسانيًا يعود إلى تاريخ وجود السجلات المكتوبة. يمكن أن يستغرق البحث المطلوب لحل المسائل الرياضية سنوات أو حتى قرون من البحث المستمر.

ظهرت الحجج الصارمة أولًا في الرياضيات اليونانية، وعلى الأخص في أصول إقليدس. منذ العمل الرائد لجوزيبه بيانو (1858-1932)، وديفيد هيلبرت (1862-1943)، وغيرهم في النظم البديهية في أواخر القرن التاسع عشر، أصبح من المعتاد النظر إلى الأبحاث الرياضية كإثبات للحقيقة عن طريق الاستنتاج الدقيق للبديهيات والتعاريف المختارة بشكل مناسب. وتطورت الرياضيات بوتيرة بطيئة نسبيًا حتى عصر النهضة، عندما أدت الابتكارات الرياضية التي تتفاعل مع الاكتشافات العلمية الجديدة إلى زيادة سريعة في معدل الاكتشافات الرياضية التي استمرت حتى يومنا هذا.

تعتبر الرياضيات ضرورية في العديد من المجالات، لما لها من قدرة على وضع نماذج رياضية تمكّنها من صياغة سلوك ما أو التنبؤ بسلوك محتمل. من أشهر المجالات التي تستعمل النماذج الرياضية العلوم الطبيعية والهندسة والطب والتمويل والعلوم الاجتماعية. أدت الرياضيات التطبيقية إلى تخصصات رياضية جديدة تمامًا، مثل الإحصاء ونظرية الألعاب والتحكم الأمثل. يشارك علماء الرياضيات في الرياضيات البحتة دون وضع أي تطبيق على أرض الواقع، ولكن غالبًا ما يتم اكتشاف التطبيقات العملية لما بدأ في الأول كرياضيات بحتة.

٤ص ٢٤ص ٦

المعادلة الرياضية في الرياضيات، هي عبارة مؤلفة من رموز رياضية، تنص على مساواة تعبيرين رياضيين.[1] ويعبر عن هذه المساواة عن طريق علامة التساوي (=) كما يلي:

{\displaystyle x+3=5\,}

تسمى المعادلة التي تأخذ الشكل ax + b = 0 حيث: a و b عددان حقيقيان معلومان، معادلة من الدرجة الأولى بمجهول واحد. في هذه المعادلة x هو المجهول الذي ينبغي إيجاده أثناء حل المعادلة.

أنواع المعادلات

ترتب المعادلات حسب العمليات وحسب الأعداد المستعملة فيها. أهم الأنواع يأتي فيما يلي:

  • المعادلات الحدودية هي معادلة حيث تساوي متعددة حدود ما، متعددة حدود ثانية.
  • المعادلات الجبريةهي مساواة بين مقدارين جبريين يحوي أحدهما أو كلاهما متغيرا أو أكثر .
  • المعادلات الخطية هي معادلة جبرية من الدرجة الأولى.
  • المعادلات المتسامية

هي معادلة تحتوي على دالة متسامية (دالة مثلثية أو أسية أو معكوساتهما)

  • المعادلات التفاضلية هي معادلات تربط دالة ما بمشتقاتها.
  • المعادلات الديوفانتية.هي معادلة حدودية في متغيرات متعددة تكون حلولها أعدادا صحيحة أو يبرهن على استحالة ذلك.
  • المعادلات الدالية هي معادلات حيث المجهول أو المجاهيل هي دوال بدلا من أن تكون مجرد متغيرات.
  • المعادلات التكاملية في علم الرياضيات هي معادلة حيث يظهر فيها دالة غير مُعرفة بجوار إشارة التكامل.

 

السؤال:  ٤ص ٢٤ص ٦

الإجابة: العبارة خاطئة

اقرأ أيضا