أدار عامر مؤشر القرص أدناه و سجل النتائج التي حصل عليها في الجدول أدناه، اختر العبارات الصحيحة لهذه البيانات
أدار عامر مؤشر القرص أدناه و سجل النتائج التي حصل عليها في الجدول أدناه، اختر العبارات الصحيحة لهذه البيانات، الاحتمال هو قياس إمكانية وقوع حدث ما. يُقاس الاحتمال بأنه رقم بين الصفر والواحد حيث يشير الصفر إلى الاستحالة ويشير الواحد إلى التأكيد. كلما زاد احتمال الحدث، زادت إمكانية وقوع هذا الحدث. أحد الأمثلة البسيطة هي رمي العملة (غير المنحاز). لأن العملة غير منحازة، فإن الناتجين (وجه ونقشة) متساويان في الاحتمال تماما أي أن احتمالية ظهور الوجه تساوي احتمالية ظهور النقشة، ولأنه لا يوجد احتمالات أخرى فإن إمكانية ظهور «الوجه» أو «النقشة» هي ½ (والتي يمكن كتابتها 0.5 أو 50%).
ظهرت فرضيات احتمال رياضية لهذه المفاهيم في نظرية الاحتمال، والتي تُستخدم بكثافة في بعض التخصصات الأكاديمية مثل الرياضيات والإحصاء والتمويل والقمار والعلم (خصوصا الفيزياء) والذكاء الاصطناعي والتعلم الآلي وعلم الحاسوب ونظرية الألعاب والفلسفة، من أجل الوصول إلى استدلالات عن التكرارية المتوقعة للأحداث. تُستخدم نظرية الاحتمال أيضا لوصف الآليات الأساسية وتنظيمات الأنظمة المعقدة.
التأويلات
عند التعامل مع التجارب العشوائية والمحددة بضوابط نظرية بحتة (مثل إلقاء العملة غير المنحازة)، يمكن وصف الاحتمالات رقميا من خلال قسمة عدد النتائج المرغوبة على العدد الكلي لكل النتائج. على سبيل المثال، عند إلقاء العملة المعدنية مرتين فإن الاحتمالات الكلية هي «وجه-وجه» و«وجه-نقش» و«نقش-وجه» و«نقش-نقش». احتمالية ظهور نتيجة «وجه-وجه» هي 1 من 4 نتائج، أو بطريقة رقمية ¼ أو 0.25 أو 25%. إلا أنه في التطبيقات العملية، نجد أنه هناك نوعين أساسيين من تأويلات الاحتمال والتي يحمل مناصروها آراء مختلفة بخصوص الطبيعة الأساسية للاحتمال:
- الموضوعيون: يحدد الموضوعيون أعدادا لوصف بعض الحالات الموضوعية أو الفيزيائية. أحد أشهر أنواع الاحتمالية الموضوعية هي الاحتمالية التكرارية، والتي تدعي أن احتمالية وقوع حدث عشوائي ترمز إلى التكرارية النسبية لحدوث نتائج التجربة عند تكرار التجربة. يعتبر هذا التأويل أن الاحتمالية هي عملية تكرار نسبية «على المدى الطويل» للنتائج. أحد تعديلات هذا التأويل هي الاحتمالية الاستعدادية والتي تفسر الاحتمالية كاستعداد أو ميل بعض التجارب لإظهار نتيجة معينة، حتى وإن وقعت التجربة مرة واحدة.
- احتمال بيشان: يحدد احتمال بيشان أعدادا لكل احتمالية غير موضوعية، أي كدرجة من الإيمان. تم تفسير درجة الإيمان على أنها "السعر الذي ستشتري أو تبيع المراهنة التي تدفع وحدة واحدة من المنفعة. أحد أشهر أنواع الاحتمال غير الموضوعي هو احتمال بيشان والتي يشمل معرفة الخبراء بالإضافة إلى البيانات التجريبية لتقديم الاحتمالات. يمثل معرفة الخبراء بعض التوزيعات الاحتمالية غير الموضوعية. يتم دمج هذه البيانات في دالة الإمكان.
مفاهيم أساسية في الاحتمالات
تتكرّر بعض المفاهيم والقوانين الأساسية أثناء دراسة الاحتمالات؛ لذلك من الأسهل معرفة ما يعنيه كلّ منها قبل دراسة هذا المجال، ومن أهم تلك المفاهيم ما يأتي:
- التجربة: (بالإنجليزية: Experiment)؛ هي عملية الحصول على نتيجة محتملة من بين مجموعة من النتائج؛ كرمي العُملة النقدية بهدف الحصول على صورة أو كتابة.
- الفضاء العينيّ: (بالإنجليزية: Sample space)؛ يُمثّل جميع الاحتمالات معاً، ومثال ذلك: الفضاء العينيّ لرمي حجر نرد مرّة واحدة هو من 1إلى 6.
- الحَدَث: (بالإنجليزية: Event)؛ ويعني وقوع نتيجة معينة أو مجموعة من النتائج ضمن الفضاء العيني، مثل: الحصول على رقم 3 نتيجةً لرمي حجر النرد، أو 9 كمجموع رقميّ حجريّ النرد الظاهرين.
- التكرار النسبي للنتيجة: (بالإنجليزية: Relative Occurrence of an outcome)؛ ويعني النسبة بين تكرار وقوع نتيجة معينة إلى عدد المرّات التي تمّ فيها تنفيذ التجربة، ومثال ذلك: إذا تمّ رمي عملة نقدية 100 مرّة، وتمّ الحصول على وجه الصورة 47 مرّة، فإنّ التكرار النسبيّ لتلك النتيجة يكون ناتج قسمة 47 على 100، أيّ 0.47.
- نتائج ذات احتماليّة مُتساوية: (بالإنجليزية: Equally likely outcomes)؛ هي النتائج التي يكون تكرارها النسبيّ متساوياً عند إجراء تجربة معيّنة مرّاتٍ كثيرة، ومثال ذلك: التكرار النسبي لكلّ من الصورة والكتابة عند رمي عملة نقدية عدداً كبيراً من المرّات سيكون متساوياً.
أنواع الاحتمالات
تُصنّف الاحتمالات إلى ثلاثة أنواع رئيسية كما يأتي:
- الاحتمال النظري (بالإنجليزية: Theoretical Probability)؛ هو الاحتمال الذي يعتمد حدوثه بشكلٍ أساسي على المنطق، فمثلاً: الاحتمال النظريّ للحصول على صورة عند رمي قطعة معدنية يساوي 0.5.
- الاحتمال التجريبي (بالإنجليزية: Experimental Probability)؛ هو الاحتمال الذي يعتمد بشكلٍ رئيسيّ على مراقبة التجربة، ويُمكن حسابه بقسمة عدد المرّات التي يتكرّر فيها حدوثه على عدد مرات تكرار التجربة، فمثلاً إذا تمّ رمي عملة معدنية عشر مرّات، وسُجِّل وقوعها على وجه الصورة 6 مرّات؛ فإنّ الاحتمال التجريبي للصورة يُساوي 6/10.
- الاحتمال البديهي (بالإنجليزية: Axiomatic Probability)؛ يعتمد على مجموعة من القواعد أو البديهيّات وضعها عالم الرياضيات كولموغوروف، وتُعرف باسم قواعد كولموغوروف الثلاثة نسبةً له، حيث يتمّ حساب إمكانية وقوع أو عدم وقوع الحوادث وفقاً لهذا النهج.