يحتوي مخزن على ٢٧٥
يحتوي مخزن على ٢٧٥، علم الحساب أو الحسابيات هو فرع من الرياضيات يتكون من دراسة الأعداد، وخاصة خصائص العمليات التقليدية عليها، بما فيها: الجمع والطرح والضرب والقسمة والرفع إلى أس، واستخراج الجذور. علم الحساب هو جزء أساسي من نظرية الأعداد، وتعتبر نظرية الأعداد واحدة من الأقسام عالية المستوى في الرياضيات الحديثة، إلى جانب الجبر والهندسة والتحليل. استخدمت مصطلحات الحسابيات والحسابيات العالية حتى بداية القرن العشرين كمرادفات لنظرية الأعداد، ولا تزال تستخدم أحيانًا للإشارة إلى جزء أكبر من نظرية الأعداد.
العمليات الحسابية
العمليات الحسابية الأساسية هي الجمع والطرح والضرب والقسمة، وقد يندرج تحتها أيضا حسابيات النسب المئوية وبشكل غير مباشر الجذور ووالأسس واللوغاريتمات، ويتم القيام بالعمليات الحسابية طبقًا لترتيب العمليات، ويمكن القيام بأي مجموعة من العمليات الأربعة في نفس الوقت باستثناء حالة القسمة على الصفر.
ترتيب العمليات الحسابية
عادة يستخدم في المعادلة الرياضية ما يسمى بالعمليات (الضرب والقسمة والجمع والطرح والأس والجذر وغير ذلك) ولكن عند حل أي معادلة هناك قواعد يجب الالتزام بها حتى يكون حل المعادلة صحيحًا، وهذه القواعد يستخدمها الحاسوب أيضًا، ومن هذه القواعد إعطاء الأولويات.
دائما نبدأ بالقيم التي تكون بين الأقواس، ثم الأسس، وبعد ذلك الضرب والقسمة ثم الجمع والطرح.
مثال:
- 6 - 1 * 0 + 2 / 2 =
- 6 - 0 + 2 / 2 =
- 6 - 0 + 1 =
- 6 + 1 = 7
يحتوي مخزن على ٢٧٥
ترتيب العمليات الحسابية (التي تسمى أحيانًا أسبقية المعامل) في علوم الرياضيات وبرمجة الحاسوب، هي قاعدة تستعمل لتوضيح أي العمليات الحسابية يجب تنفيذها أولًا في جملة حسابية معينة.
وفي علم الرياضيات ومعظم لغات الحاسوب، يتم تنفيذ عمليات الضرب قبل الجمع، وقد كان هذا هو الحال منذ إدخال الترميز الجبري الحديث. على سبيل المثال في التعبير 2 + 3 × 4، الجواب هو 14. الأقواس «(..) و{..} و[..]»، لديها قواعد خاصة بها، يمكن أن تستخدم لتفادي الخلط بين العمليات، وبالتالي يمكن كتابة التعبير السابق بالصيغة التالية: 2 + (3 × 4)، ولكن القوسين لا لزوم لهما هنا، لأن الأولوية ماتزال للضرب حتى بدونهما. عندما تم تقديم الأس في القرنين السادس عشر والسابع عشر، فقد تم إعطاء الأسبقية على كل من الجمع والضرب، ويمكن وضعها فقط كخط مرتفع أعلى الأساس. هكذا 3 + 25 = 28 و3 × 25 = 75.
وقد وضعت هذه القواعد لتوضيح كيفية التعامل مع الرموز والعمليات الحسابية، مع السماح باستخدام الرموز كأداة توضيحية فقط غايتها تسهيل العمليات الحسابية وإعطاءها صورة أكثر دقة مما يسهل الحصول على إجابة نهائية صحيحة، ويتحقق ذلك بفهم هذه الرموز وغاية كل واحد منها فمثلًا يمكن استخدام الأقواس () للإشارة إلى أن العملية الحسابية داخل القوس تتمتع بالأولوية عن العمليات الأخرى وكمثال توضيحي (2 + 3) × 4 = 20، بسبب وجود الأقواس أُعطت الأولولية للجمع بالرغم من أولوية الضرب في حال عدم وجود الأقواس، أما عند الحاجة إلى وجود أكثر من قوس في معادلة واحدة يمكن استخدام شكل آخر من أشكال الأقواس لتجنب أي التباس كما في [2 × (3 + 4)] - 5 = 9.
ترتيب مستوى العمليات
ترتب أسبقية العمليات الحسابية وهو نفس الترتيب المستخدم في علم الرياضيات والعلوم الطبيعية والعلوم التكنولوجية والعديد من لغات البرمجة بالقواعد التالية:
العمليات المدمجة داخل أقواس (بنفس الترتيب الموضح)
- الضرب المتكرر (رفع الأس).
- الجذور.
- الضرب والقسمة.
- الجمع والطرح.
يتم تسلسل العمليات على الصيغة التالية:
- العمليات داخل الأقواس.
- رفع الأسس.
- الضرب والقسمة.
- الجمع والطرح.
ومن اليمين إلى اليسار (في اللغة العربية) أو من اليسار إلى اليمين (في اللغة الإنجليزية).
مثال
(بالإنجليزية) 13 = 6/2*3+4
حيث يتم تنفيذ العمليات الحسابية بالترتيب التالي:
- الضرب والقسمة من اليسار إلى اليمين (3*6 = 18)، ثم (18/2 = 9).
- الجمع (9 + 4 = 13).