عدد يزيد على 51 بمقدار 9
عدد يزيد على 51 بمقدار 9، الرِّيَاضِيَّات هي مجموعة من المعارف المجردة الناتجة عن الاستنتاجات المنطقية المطبقة على مختلف الكائنات الرياضية مثل المجموعات، والأعداد، والأشكال والبنيات والتحويلات. وتهتم الرياضيات أيضًا بدراسة مواضيع مثل الكمية والبنية والفضاء والتغير. ولا يوجد حتى الآن تعريف عام متفق عليه للمصطلح.
يسعى علماء الرياضيات إلى استخدام أنماط رياضية لصياغة فرضيات جديدة؛ من خلال استعمال إثباتات رياضية بهدف الوصول للحقيقة وذرء الفرضيات السابقة أو الخاطئة. فمن خلال استخدام التجريد والمنطق، طُوِّرت الرياضيات من العد والحساب والقياس إلى الدراسة المنهجية للأشكال وحركات الأشياء المادية. لقد كانت الرياضيات العملية نشاطًا إنسانيًا يعود إلى تاريخ وجود السجلات المكتوبة. يمكن أن يستغرق البحث المطلوب لحل المسائل الرياضية سنوات أو حتى قرون من البحث المستمر.
فروع علم الرياضيات
تنقسم الرياضيات إلى سبعة فروع رئيسية، وهي:
- الحساب: علم الحساب يقوم على الأرقام وتطبيقاتها في العمليات الأساسية من جمع وطرح وضرب وقسمة، في المسائل اليومية والحسابات البسيطة من ربح وخسارة.
- الطوبولوجيا: من أحدث فروع الرياضيات ويدرس التغيرات غير المألوفة في الأشكال الهندسية من تمدد والتواء.
- الإحصاء: جانب مجرد من الرياضيات يستخدم للتنبوء بالأحداث خلال تفسير منطقي يستخدم في العلوم التطبيقية والاجتماعية.
- الهندسة: تدرس الهندسة أشكال وأحجام الأشياء، والأبعاد بينها والمساحة، وهي مهمة في العديد من الحياة العملية.
- علم المثلثات: يعنى بقياس الزوايا وجوانب المثلثات، وهو أحد أهم فروع الرياضيات، يوظف في التكنولوجيا.
- التفاضل والتكامل: مرحلة متقدمة في دراسة الرياضيات تعنى بمعدل التغير، وليس قياس الأشياء الثابتة فقط، بل المتحركة أيضًا.
- الجبر: ويمكن تمثيله بمعادلات جبرية والهدف في الجبر معرفة المجهول، هذا وهنالك نوعان من الجبر: جبر معادلات وجبر مجرد، الأول ثوابت ومجموعة مصفوفات يهتم بالعلوم والإقتصاد، والثاني يستخدم في الرياضيات المتقدمة لتحديد القيمة المتغيرة.
أبرز وأهم علماء الرياضيات
تطور علم الرياضيات كان همزة وصلا من جهد علماء العرب والغرب ممن إهتموا بهذا العلم، فيما يلي نبذة عن أبرزعلماء الرياضيات بين العصر القديم والحديث:
- أرخميدس: ولد أرخميدس عام 287 قبل الميلاد في إيطاليا، ويعد أشهر عالم رياضيات في عصره، إذ يعود له الفضل في اكتشاف سطح وحجم الكرة، ويعرف باهتمامه بالمرايا والميكانيك، والتعامل مع الأشكال المخروطية، وقد كان إضافة إلى ذلك عالم فلك بارز.
- إقليدس: عالم رياضيات اهتم بالهندسة وعناصرها، وهو واضع مقياس الهندسة الكلاسيكي.
- فيثاغورس: فيلسوف يوناني ولد عام 467 قبل الميلاد، وهو مخترع نظرية فيثاغورس، تلك الصيغة الرياضية الشهيرة التي تؤكد أن مربع وتر المثلث القائم يساوي مجموع المربعات في الظلعين الآخرين، وهو تطبيق مهم في قياس المسافة والمساحة.
- الخوارزمي: هو محمد بن موسى ولد عام 780م، جمع بين علم الرياضيات والفلك، من أبرز أعماله الأرقام الهندية، ومفاهيم الجبر، وعمل على إيجاد حلول للمعادلة الخطية والتربيعية، من أهم آثاره كتاب صورة الأرض.
- ابن الهيثم: عالم بصريات مسلم ولد 965م اهتم بالرياضيات والفيزياء والميكانيكا، والطب والفلسفة، أكد فرضيات عدة من بينها انكسار الضوء.
- بيير لابلاس: ولد عام 1749م في فرنسا، وهو عالم رياضيات وفيزيائي اهتم بالنظام الشمسي والجاذبية والأساليب الكمية للمقارنة بين الأنظمة الحية، ومن أبرز ما قدم النظرية التحليلية للاحتمالات عام 1812م.
- غاوس: عالم رياضيات ألماني ولد عام 1777م، له العديد من المساهمات الرياضية، لاسيما نظرية الأعداد الهندسية والاحتمالات، قدم عام 1797 اطروحة دكتوراة حول النظرية الأساسية للجبر.
- ابن سينا: فيلسوف وكيميائي وطبيب مسلم ولد في بخارى عام 980م، كتب في الهندسة والرياضيات واللغة، وله عدة مؤلفات في مجال الرياضيات ككتاب الحاصل والمحصول ورسائل في الحساب والهندسة.
- عمر الخيام: عالم فلك ورياضيات من مواليد خرسان عام 1048م، له مناقشة منهجية لحل المعادلات التكعيبية، أثرى علم الرياضيات، كان عمر أضافة إلى ذلك شاعرا بارعا.
مجالات علم الرياضيات
يحظى علم الرياضيات بقبول أكاديمي مدمج بالعملي وفق المجال الذي يبحث فيه، على أساسه صنف إلى ثلاثة مجالات، فيما يلي توضيح لكل منها:
- رياضيات بحتة: يستخدم المجال لحل المشكلات، هذا وتتضمن استخدام الأعداد، وهي دراسة المبادئ دون تطبيق عملي.
- أسس الرياضيات: تكسب دارسها المعرفة لما بها من الأبعاد والمنطق الرياضي، والجبر والبرمجة الخطية، والتفاضل والتكامل.
- رياضيات تطبيقية: تدرس الكميات والجبر والمنطق الرياضي، والإحصاء والبيانات، هذا المجال يقدم الحلول للمشاكل، ويستخدم في التشفير والهندسة، إذ تستخدم القيم العددية ووحدات القياس في حياتنا اليومية.
عدد يزيد على 51 بمقدار 9
الأعداد هي مفهوم أساسي في الرياضيات وتشكل الأساس للعديد من العمليات والمفاهيم الرياضية. هناك عدة أنواع من الأعداد، ومن بينها:
- الأعداد الطبيعية (أو الأعداد الصحيحة): وتشمل الأعداد الصحيحة الإيجابية والصفر. على سبيل المثال: 1، 2، 3، 4، إلخ.
- الأعداد الصحيحة السالبة: وتشمل الأعداد السالبة. على سبيل المثال: -1، -2، -3، إلخ.
- الأعداد الكسرية: وهي الأعداد التي يمكن تمثيلها على شكل كسر (تجزئة)، حيث يكون لدينا مقام وبسط. على سبيل المثال: 1/2، 3/4، -2/5، إلخ.
- الأعداد العشرية (الكسور العشرية): وهي الأعداد التي تحتوي على جزء عشري بعد الفاصلة. على سبيل المثال: 1.5، -0.75، 3.14159 (باي).
- الأعداد العقدية: وهي الأعداد التي تحتوي على جزء عقدي بعد الفاصلة. على سبيل المثال: 2.5، -1.25، 3.0.
- الأعداد الترتيبية: وهي الأعداد التي تستخدم لترتيب العناصر في سلسلة أو مجموعة. على سبيل المثال: الأول (1st)، الثاني (2nd)، الثالث (3rd)، إلخ.
- الأعداد التخيلية: وتسمى أيضًا الأعداد الخيالية، وتتمثل في الأعداد التي ليس لها قيمة حقيقية. على سبيل المثال: الجذر التربيعي للعدد -1 (تعبر بالرمز i في الرياضيات).