معكوس العدد ٦ هو، العدد الصحيح هو الذي يُمكن كتابته بدون استخدام الكسور أو الفواصل العشرية، وتتكون مجموعة الأعداد الصحيحة والتي تعتبر مجموعة جزئية من مجموعة الأعداد الحقيقية- من الأعداد الطبيعية (1، 2، 3.) والصفر والأعداد السالبة المقابلة للأعداد الطبيعية (-1، -2، -3..)، وعليه فمجموعة الأعداد الصحيحة تكون مجموعة غير منتهية شأنها في ذلك شأن مجموعة الأعداد الطبيعية، وعادة ما يرمز لها بالحرف اللاتيني Z.
مجموع عددين صحيحين موجبين هو عدد صحيح موجب. فمثلا 3 + 6 = 9 تنتمي لمجموعة الأعداد الصحيحة الموجبة. ومجموع عددين صحيحن سالبين هو عدد صحيح سالب. فمثلا 6- + 4- = -10 تنتمي لمجموعة الأعداد الصحيحة السالبة.
عند جمع عددين صحيحين أحدهما سالب والآخر موجب فإن إشارة الناتج تكون إشارة العدد الكبير من حيث القيمة المطلقة ويكون العدد الفرق بينهما. مثال: 3 + -7. العدد الكبير بين العددين من حيث القيمة المطلقة هو -7 وإشارته - معنى ذلك أن الناتج عدد سالب والناتج يكون الفرق بين العددين (يُطرح العددان حيث يكون الاثنان موجبين لأن إشارة -7 أخذها الناتج وصار عددا موجبا) هو 4 إذا الناتج = -4.
الطرح في مجموعة الأعداد الصحيحة هو جمع المعكوس الجمعى فمثلا: 4 - (-3) = 4 + 3 = 7. فعندما يكون هناك عملية طرح فإنه يتم تغيير علامة الطرح وجعلها جمعا ويتم تغيير إشارة العدد من أجل القيام بعملية الجمع. ومن خصائص الطرح في Z ما يلي:
(4 - (-8)) - 9 = 4 + 8 - 9 = 12 - 9 = 3
أو: 4 - (-8 - 9) = 4 - (-8 + (-9) = 4 - (- 17) = 4 + 17 = 21 إذا الناتجان اختلفا معنى ذلك أن عملية الجمع دامجة في Z.
قواعد إشارات عملية القسمة تشبه عملية الضرب تماما.
أن العَدد 6 هو رقم صحيح، ومَعكوسه هو رقم صحيح أيضاً، ومن أهم صفات الأعداد الصحيحة أن كل رقم صحيح موجب يقابله رقم صحيح سالب على سلم أو خط الأعداد الذي يتم رسمه على الورق لتعريف الطالب بهذه الرقم، بحيث يكون منتصفه هو الصفر، والأرقام على يمينه صحيحة موجبة، والأرقام على يساره الصفر صحيحة سالبة، ومن ذلك نعلم أن الرقم 6 الموجب الصحيح، يقابله على خط الأعداد الرقم السالب الصحيح: