ملتقى الارتفاعات في المثلث القائم الزاوية تقع عند رأس الزاوية القائمة، في الهندسة الرياضية، المثلث القائم أو مثلث قائم الزاوية هو مثلث إحدى زواياه قائمة أي أن ضلعين في المثلث القائم يشكلان زاوية قياسها 90°.
يُعرف المثلث قائم الزاوية بأنه مثلث ذو زاوية بقياس 90ْ درجة، وتكون هذه الزاوية محصورة بين الضلع القائم وقاعدة المثلث، بينما يمثل ضلعه الثالث الوتر.
ومن المعروف أن مجموع زوايا المثلث يساوي 180ْ درجة، أي أن مجموع الزاويتين المتبقيتين يساوي 90ْ درجة، ويمتاز عن غيره من المثلثات بارتباط أضلاعه بصيغة رياضية تُدعى نظرية فيثاغورس وهي قانون المثلث قائم الزاوية.
{\displaystyle h^{2}=pg\,}
أو {\displaystyle h={\frac {AC.BC}{AB}}} .كما هو الحال مع أي مثلث، تعطى المساحة بالقانون:
مساحة المثلث = ½ القاعدة × الارتفاع.
ولهذا فإن مساحة المثلث القائم تعطى بالصيغتين:
حيث a,b هما ضلعا الزاوية القائمة.
حيث c وتر المثلث القائم و f الارتفاع عليه.
تعد هذه المبرهنة أهم ما يميز المثلث القائم وتنص مبرهنة فيثاغورس على:
يمكن إعادة صياغة هذه النظرية في صورة المعادلة:
{\displaystyle c^{2}=a^{2}+b^{2}\,}
حيث c هو طول الوتر وa ,b طول الضلعان القائمان.